Behavioral and neurochemical effects of amphetamine analogs that release monoamines in the squirrel monkey

Heather L. Kimmel a,b,⁎, Daniel F. Manvich a, Bruce E. Blough d, S. Stevens Neguse e, Leonard L. Howell a,b,c

a Division of Neuroscience, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, NE, Atlanta, GA 30329, United States
b Department of Pharmacology, Emory University School of Medicine, 5001 Rollins Research Center, Atlanta, GA 30322, United States
c Department of Psychiatry and Behavioral Sciences, 1639 Pierce Drive, Suite 4000, Emory University School of Medicine, Atlanta, GA 30322, United States
d Center for Organic and Medicinal Chemistry, RTI International, 3040 Cornwallis Road, P.O. Box 12104, Research Triangle Park, NC 27709, United States
e Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, 410 North 12th Street, P.O. Box 59806, Richmond, VA 23298, United States

ARTICLE INFO

Article history:
Received 6 June 2009
Received in revised form 24 August 2009
Accepted 8 September 2009
Available online 17 September 2009

Keywords:
Amphetamine
Dopamine
Locomotor activity
Microdialysis
Nonhuman primate
Nucleus accumbens
Psychostimulants
Serotonin
Squirrel monkey

ABSTRACT

To date, there are no effective pharmacotherapies for treating psychostimulant abuse. Previous preclinical and clinical studies have shown that continuous treatment with the monoamine releaser amphetamine reduces cocaine self-administration, but amphetamine selectively targets the dopamine system and is reinforcing. In the present study, we examined the consequences of administration of amphetamine and three structurally related analogs that vary in their potencies for releasing dopamine and serotonin on behavioral-stimulant effects and nucleus accumbens dopamine levels in squirrel monkeys. Amphetamine and PAL-353, which have relatively high selectivity for releasing dopamine vs. serotonin, increased accumbens dopamine levels and induced stimulant effects on behavior maintained by a fixed-interval schedule of reinforcement. PAL-313, which has a relatively low selectivity for releasing dopamine vs. serotonin, increased dopamine levels, but did not induce behavioral-stimulant effects. PAL-287, which is relatively nonselective in releasing dopamine and serotonin, did not increase dopamine levels or induce behavioral-stimulant effects. These results demonstrate that increasing serotonergic activity attenuates dopamine release and dopamine-mediated behavioral effects of monoamine releasers. In addition, these results support further investigation of PAL-313 and similar compounds as a potential medication for treating psychostimulant abuse.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Psychostimulant abuse is a significant public health problem, with 2.1 million Americans reporting cocaine use and 1.9 million reporting methamphetamine use in 2006 (Substance Abuse and Mental Health Services Administration (SAMHSA), 2007). Unfortunately, there are no currently FDA-approved pharmacotherapies to treat stimulant dependence (Volkow and Li, 2004). Agonist substitution therapies have been successful in treating patients dependent on opioids (Kreek, 2000) or nicotine (Henningfield, 1995). Thus, drugs that have pharmacological and behavioral effects similar to those of psychostimulants have the potential to be effective medications for psychostimulant abuse. In order to identify these potential medications, there needs to be a better understanding of how psychostimulants produce their behavioral and neurochemical effects.

Psychostimulants interact with monoamine (dopamine, norepinephrine, and serotonin) neurons in the central nervous system. These neurons express specialized plasma membrane proteins that transport monoamines from the extracellular space back into the cytoplasm. Binding to these transporter proteins [dopamine transporter (DAT), norepinephrine transporter (NET), and serotonin transporter (SERT)] is the principal mechanism for inactivation of monoamine signaling (Howell and Kimmel, 2008). Drugs that interact with these transporters can be categorized as either reuptake inhibitors or substrate-type releasers, based on their mechanism of action. Reuptake inhibitors bind to transporters without being taken up into the cell. This binding blocks the reuptake of released neurotransmitter molecules, thereby elevating extracellular neurotransmitter levels in an impulse-dependent fashion. In contrast, substrate-type releasers bind to the transporter proteins and are then transported into the cytoplasm of nerve terminals. These releasers elevate extracellular neurotransmitter levels in two ways: by promoting efflux of the transmitter through the transporter protein and by increasing cytoplasmic transmitter levels by disrupting transmitter

⁎ Corresponding author. Division of Neuroscience, Yerkes National Primate Research Center, 954 Gatewood Road, NE, Atlanta, GA 30329, United States. Tel.: +1 404 727 7786; fax: +1 404 727 1266.

E-mail addresses: heather.kimmel@emory.edu (H.L. Kimmel), dmanvich@emory.edu (D.F. Manvich), bebl@vti.org (B.E. Blough), ssnegus@vcu.edu (S.S. Negus), lhowell@emory.edu (L.L. Howell).

091-3057/$ – see front matter © 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.pbb.2009.09.007
storage in vesicles (Rudnick, 1997; Rudnick and Clark, 1993; Sulzer et al., 2005).

Although cocaine is a nonselective inhibitor of all three monoamine transporters (Madras et al., 1989; Reith et al., 1986), the behavioral effects of cocaine associated with its abuse liability have been attributed primarily to its actions at DAT (Ritz et al., 1987). This has been substantiated in rodent, nonhuman primate, and clinical studies. A relationship between the potency of cocaine analogs at binding to the DAT in vitro and the potency of these analogs in vivo has been demonstrated by their locomotor-stimulant effects in rodents (Cline et al., 1992; Kuhar, 1993) and their cocaine-like behavioral effects in squirrel monkeys (Bergman et al., 1989; Madras et al., 1989; Spealman et al., 1989). The relevance of the DAT in the abuse liability of cocaine has been supported further by neuroimaging studies. In human cocaine users, a significant correlation was observed between the level of DAT occupancy and the magnitude of the subjective high following administration of cocaine (Volkow et al., 1997) or the behavioral-stimulant methylphenidate (Volkow et al., 1999). Similarly, the abuse-related behavioral effects of monoamine releasers, such as amphetamine and methamphetamine, have been attributed to their effects on dopamine (Hanson et al., 2004; Koob and Bloom, 1988; Wise, 1996; Wise and Bozarth, 1987).

The purpose of the present study was to investigate the neurochemical and behavioral effects of mixed-action monoamine releasers in squirrel monkeys. Amphetamine and three structurally related analogs (Fig. 1) were selected for comparison in these studies. While these drugs are equipotent in releasing dopamine in in vitro studies conducted in rodent tissue (Table 1), they vary in their potency for releasing serotonin. Within the group of selected compounds, amphetamine and PAL-353 are similar in their DA/5-HT releasing potency ratio, in that both are very selective for dopamine. PAL-313 is less selective for dopamine, and PAL-287 even less so. The serotonin selective releaser fenfluramine was added to the behavioral studies for comparison. Our hypothesis was that, as the selectivity for serotonin was added to the behavioral studies for comparison, the degree of difference in locomotor activity would decrease accordingly.

2. Methods

2.1. Subjects

Ten adult male squirrel monkeys (Saimiri sciureus) weighing 700–1200 g served as subjects. Animals lived in individual home cages and had daily access to food (Harlan Teklad monkey chow; Harlan Teklad, Madison, WI; fresh fruit and vegetables) and unlimited access to water. All monkeys had prior exposure to cocaine and other drugs with selective dopaminergic or glutamatergic activity in various behavioral studies. Animal use procedures were in strict accordance with the National Institutes of Health “Guide for Care and Use of Laboratory Animals” (Publication no. 85-23, revised 1985) and were approved by the Institutional Animal Care and Use Committee of Emory University.

2.2. Apparatus

During daily behavioral test sessions, each of six animals was seated in a Plexiglas chair within a ventilated, sound-attenuating chamber (MED Associates, Georgia, VT). The chair was equipped with stimulus lights, a response lever, and a tail stock for delivering a mild electrical stimulus. Behavioral test sessions lasted approximately 90 min each day, 5 days/week. During microdialysis experiments in a separate group of four animals, the subjects were seated in a chair and fitted with an adjustable Lexan neck plate that was positioned perpendicular to the medial plane of the body just above the shoulder. These subjects had been acclimated to the chair and neck plate over several months prior to the start of these experiments. At least 2 weeks elapsed between the microdialysis experiments.

2.3. Guide cannulae implantation

A stereotaxic apparatus was used to implant CMA/11 guide cannulae (CMA/Microdialysis, Acton, MA) bilaterally to target the nucleus accumbens of the four monkeys in a procedure described previously (Czoty et al., 2000). Anesthesia was initiated with Telazol (tiletamine hydrochloride and zolazepam hydrochloride, 3.0 mg) and atropine. Inhaled isoflurane (1.0–2.0%) was administered to maintain depth of anesthesia during the procedure. A stainless steel stylet was placed in each guide cannulae when not in use. Analgesics [Banamine (flunixin

Table 1

<table>
<thead>
<tr>
<th>Drug</th>
<th>EC50 (nM)</th>
<th>DA/5-HT</th>
</tr>
</thead>
<tbody>
<tr>
<td>d-Amphetamine</td>
<td>8.0</td>
<td>1756</td>
</tr>
<tr>
<td>PAL-357a</td>
<td>24.2</td>
<td>1937</td>
</tr>
<tr>
<td>PAL-313a</td>
<td>44.1</td>
<td>53.4</td>
</tr>
<tr>
<td>PAL-287b</td>
<td>12.6</td>
<td>3.4</td>
</tr>
<tr>
<td>Fenfluramineb</td>
<td>>10,000</td>
<td>79.3</td>
</tr>
</tbody>
</table>

Modified from *Wee et al., 2005 and *Rothman et al., 2007.

![Fig. 1. Chemical structures of amphetamine and the four structurally related drugs used in these studies.](image)
with arti-
microinfusion pump via FEP Te-
inserted into the guide cannulae and connected to a Harvard PicoPlus
were accessed in each study. This regimen of repeated access has
were tested a maximum of one time every other week, and both sites
samples, saline or a dose of a test drug was administered i.m. and
baseline dopamine concentration. Following collection of baseline
four consecutive 6-min samples were collected for determination of
samples were collected every 6 min in microcentrifuge
tubes and immediately refrigerated. Following a 60-min equilibration,
experiment. Samples were collected every 6 min in microcentrifuge
tubing. The probes were perfused with artificial cerebrospinal fluid at 2.0 μl/min for the duration of the experiment. Samples were collected every 6 min in microcentrifuge tubes and immediately refrigerated. Following a 60-min equilibration, four consecutive 6-min samples were collected for determination of baseline dopamine concentration. Following collection of baseline samples, saline or a dose of a test drug was administered i.m. and 6-min samples were collected for an additional 90 min. The animals were tested a maximum of one time every other week, and both sites were accessed in each study. This regimen of repeated access has produced consistent responses to drug treatment without significant gliosis (Czoty et al., 2000).

High-performance liquid chromatography (HPLC) and electrochem-
detection were used to quantify levels of dopamine. The HPLC system consisted of a small bore (3.2 mm × 150 mm, 3 μm) column (ESA, Inc., Chelmsford, MA) with a commercially available mobile phase (MD-TM, ESA, Inc.) delivered by an ESA 582 solvent delivery pump at a flow rate of 0.6 μl/min. After loading onto the refrigerated sample tray, the samples (12 μl) were automatically mixed with 3 μl of ascorbate oxidase, and 5 μl of this mixture was injected into the HPLC system by an ESA Model 542 autosampler. The samples were analyzed within 12 h of collection, remaining either in a refrigerator or in the refrigerated autosampler tray during this time. Electrochemical analyses were performed using an ESA dual-channel analytical cell (model 5040) and guard cell (model 5020, potential = 350 mV) and an ESA Coulochem II detector. The potential of channel 1 was set to −150 mV for oxidation, while the potential of channel 2 was set to 275 mV for reduction. A full range of dopamine standards (0.5–25 nM) was analyzed both before and after each set of samples to evaluate possible degradation of dopamine. Levels of dopamine below 0.1 nM were considered below the limit of detection. A desktop computer collected the data and chromatograms were generated by EZChrom Elite software (version 3.1, Scientific Software, Pleasanton, CA). The chromatograms were analyzed using the EZChrom software, comparing the area under the curve of the experimental samples with that of the standards. The neurochemical effects of the drugs were compared with the neuro-
chemical effects of saline and cocaine. Basal levels of dopamine were between 3–5 nM, unadjusted for probe recovery, as reported in earlier studies (Czoty et al., 2000). Before and after each in vivo experiment, probes were tested in vitro to determine suitability of the probes. Recovery percentage was similar for all probes (10–20%).

2.6. Drugs

Amphetamine (Sigma Aldrich, St. Louis, MO) was dissolved in 0.9%
saline, while PAL-287, PAL-313, and PAL-353 (Research Triangle
Institute, Research Triangle, NC), and fenfluramine (Sigma Aldrich, St. Louis, MO) were dissolved in sterile water. Drug doses were determined as salts. Drug injections were administered into the thigh muscle in a volume of 0.4 to 0.8 ml in both the behavioral and microdialysis studies.

2.7. Data analysis and statistics

Each microdialysis time–course curve was analyzed using a one-way ANOVA. When a significant main effect was detected, the time points following drug administration were compared to the zero time point using Dunnett’s post-hoc test. The overall rate data for each drug in the behavioral-stimulant dose–effect curves (Fig. 3) was analyzed using a repeated-measures one-way ANOVA. When a significant main effect was detected, each dose was compared to the vehicle using Dunnett’s post-hoc test. The time-course behavioral-stimulant data (Fig. 4) were analyzed such that each dose of each drug was compared to the vehicle using a repeated-measures two-way ANOVA. When a significant main effect was detected, each time point following drug administration was compared to the corresponding time point following vehicle administration using Bonferroni post-hoc tests.

3. Results

For the in vivo microdialysis studies, the same dose for each drug was selected (1.0 mg/kg, i.m.), as they are approximately equipotent in releasing dopamine as measured by in vitro assays using rodent tissue (Table 1). Administration of PAL-353 had a significant effect (F(18,54) = 5.433, p < 0.001) and produced the greatest increase in extracellular dopamine in the nucleus accumbens (Fig. 2), with a peak of 1612% of basal dopamine levels 36 min after drug injection. There was a significant main effect of amphetamine administration (F(18,54) = 7.017, p < 0.001), which produced a peak increase of 579% of basal dopamine levels at 18 min after drug injection. Administration of PAL-313 produced a peak increase of 442% of basal dopamine levels at 42 min after drug injection, and there was a significant main effect of this drug (F(18,54) = 3.217, p < 0.001). Administration of PAL-287 produced a peak increase of 106% of basal dopamine levels at 30 min after drug injection. In contrast to the other three drugs, there was no significant main effect of PAL-287 (F(18,54) = 1.230, NS).

The effects of a single i.m. administration of each of a range of doses of each drug on the rate of lever-pressing behavior was examined in a group of squirrel monkeys that was trained on a fixed-interval schedule (Fig. 3). The data are expressed as an average of the response rate as a percent of baseline responding following saline administration over the entire 90-min session. This baseline response following saline administration was reassessed between each set of dose–response
determinations. Administration of amphetamine (0.03–1.0 mg/kg) significantly increased the response rates above baseline levels ($F(4,20) = 23.265, p < 0.0001$) in an inverted U-shaped manner, with a peak at 0.3 mg/kg. Administration of PAL-353 (0.03–1.7 mg/kg) also significantly increased the response rates above baseline levels ($F(5,25) = 9.806, p < 0.001$) in an inverted U-shaped manner, with a peak at 0.3 mg/kg. Administration of PAL-313 (0.03–1.7 mg/kg) significantly altered the response rates, as compared to baseline levels ($F(5,25) = 15.427, p < 0.001$), such that 1.7 mg/kg significantly decreased responding to below baseline levels. Administration of PAL-287 (0.03–3.0 mg/kg) also significantly altered the response rates ($F(5,25) = 8.408, p < 0.001$), such that 1.0 mg/kg significantly increased responding above baseline levels, but 3.0 mg/kg significantly decreased responding to below baseline levels. Lastly, the administration of fenfluramine (0.3–3.0 mg/kg) significantly altered the response rates ($F(3,15) = 4.474, p = 0.020$), such that 3.0 mg/kg significantly decreased responding below baseline levels.

The full time course of behavioral-stimulant effects of 0.3 and 1.0 mg/kg amphetamine and PAL-353 are presented in Fig. 4, along with the effects of vehicle administration. In general, 0.3 mg/kg of amphetamine increased the response rates, while 1.0 mg/kg suppressed the response rates (Fig. 4A). Administration of 0.3 mg/kg amphetamine resulted in a peak increase of 358% basal activity 18 min after administration. There was a significant main effect of drug ($F(1,5) = 32.227, p = 0.002$) and of time ($F(14,70) = 2.584, p = 0.005$), but not of the interaction ($F(14,70) = 1.466$, NS). Administration of 1.0 mg/kg amphetamine resulted in a peak increase of 136% basal activity 12 min after administration, as well as a peak decrease of 39% basal activity in 24 min. The main effects of both drug and time for this dose of amphetamine just missed statistical significance ($F(1,5) = 5.269, p = 0.07$; $F(14,70) = 1.783, p = 0.059$).

In general, both doses of PAL-353 increased response rates, although this effect was not dose-related (Fig. 4B). Administration of 0.3 mg/kg PAL-353 resulted in a peak increase of 377% basal activity 18 min after administration. There was a significant main effect of drug ($F(1,5) = 53.380, p < 0.0001$) and of time ($F(14,70) = 14.0875, p < 0.0001$), as well as a significant interaction ($F(14,70) = 7.04, p < 0.001$). Administration of 1.0 mg/kg PAL-353 resulted in a peak increase of 306% basal activity 18 min after administration. There was a main effect of drug ($F(1,5) = 7.687, p = 0.039$) and of time ($F(14,70) = 2.895, p = 0.002$), but not of the interaction ($F(14,70) = 0.843$, NS).

4. Discussion

The in vivo microdialysis studies described here show that acute systemic administration of amphetamine, PAL-353, and PAL-313 significantly increased dopamine levels in the nucleus accumbens in squirrel monkeys. The magnitude of this effect varied, such that the largest increase was observed following administration of PAL-353, followed by amphetamine and PAL-313. In contrast, administration of PAL-287 did not increase dopamine levels above baseline. In a separate group of squirrel monkeys, administration of amphetamine and PAL-353 induced behavioral-stimulant effects, while administration of PAL-313, PAL-287, and fenfluramine decreased response rates. In vitro assays using rodent tissue indicate that the four PAL drugs are nearly equipotent in releasing dopamine and norepinephrine, but their potencies in releasing serotonin vary (Negus et al., 2007; Rothman et al., 2001; Wee et al., 2005). Based on the literature, the rank order for releasing dopamine vs. serotonin of these drugs is amphetamine = PAL-353 > PAL-313 > PAL-287, and the current microdialysis and behavioral data reflect this order.

![Fig. 2. Increases in extracellular dopamine following i.m. administration of each of the four drugs. Data (mean ± SEM) are presented as a percent of baseline dopamine levels prior to drug injection in each study. *p < 0.05, as compared to baseline using Dunnett's post-hoc test.](image1)

![Fig. 3. Dose–effect curve of increases in rates of responding following i.m. administration of each drug. Data (mean ± SEM) are presented as a percent of the rate of lever-pressing following i.m. administration of vehicle. These rates were averaged across the entire 90-min session, resulting in one data point for each dose administered. The dotted line represents baseline responding rates following i.m. administration of saline. *p < 0.05, as compared to vehicle using Dunnett's post-hoc tests.](image2)

![Fig. 4. Time–course of increases in rates of responding following i.m. administration of 0.3 mg/kg or 1.0 mg/kg amphetamine (panel A) or 0.3 mg/kg or 1.0 mg/kg PAL-353 (panel B). Data (mean ± SEM) are presented as a percent of the rate of lever-pressing following i.m. administration of saline. The dotted line represents baseline responding rates following i.m. administration of saline. **⁎⁎⁎p < 0.001, **⁎p < 0.01, *p < 0.05, as compared to vehicle at that time point using Bonferroni post-hoc tests.](image3)
Earlier studies in rodents indicated that administration of amphetamine and PAL-353 increased locomotor activity, but PAL-313 and PAL-287 did not (Rothman et al., 2005; Wellman et al., 2009). The behavioral-stimulant effect of drugs in rodents is often associated with abuse liability in humans (Wise and Bozarth, 1987), although a dissociation between these two characteristics has been noted (Donovan et al., 1999; Rocha et al., 1998). Rhesus monkeys trained on a fixed-ratio schedule self-administered PAL-353, as did those trained on a progressive-ratio schedule (Wee et al., 2005). While PAL-313 maintained self-administration behavior in these same animals, the animals did not take as many infusions of PAL-313 as they did of PAL-353. In a separate study, rhesus monkeys trained on a fixed-ratio schedule did not self-administer PAL-287 across a range of doses (0.01–0.3 mg/kg/inf), although they readily self-administered cocaine (Rothman et al., 2005). These results suggested that the increased potency for releasing serotonin of PAL-313 and PAL-287 decreased the reinforcing effectiveness of these drugs, and the current results suggest that this mechanism is also involved in the blunted effect on extracellular dopamine release and operant behavior observed after drug administration. The current data also support earlier evidence that increasing serotonin release can attenuate drug-induced increases in dopamine levels in rodents and nonhuman primates (Czoty et al., 2002; Di Matteo et al., 2008). However, PAL-287 is also a partial agonist at the 5HT2C receptor (Rothman et al., 2005), which may also contribute to the decreased behavioral-stimulant and rewarding effects of this drug (Bubar and Cunningham, 2006, 2008). In contrast, PAL-313 and PAL-353 are not active at this receptor (unreported observations, Blough).

One surprising result of these studies was that the magnitude of drug-induced dopamine increase in the microdialysis study was much larger for PAL-353 than for amphetamine, although these two drugs are chemically very similar and have very similar ratios of dopamine to serotonin release. In contrast to the large difference in neurochemical effects, the maximal increase in locomotor activity was similar for PAL-353 and amphetamine. The similarity in the magnitude of the behavioral-stimulant effect of these two drugs has also been observed in rats following i.p. administration (Wellman et al., 2009). In the present study, the 1.0 mg/kg dose of each of these drugs was on the descending limb of the dose–effect curve for behavioral effects, but 1.0 mg/kg PAL-353 still had a significant behavioral-stimulant effect, while 1.0 mg/kg amphetamine did not. Initially, this difference appears to be explained by the microdialysis data, as administration of 1.0 mg/kg PAL-353 produced a larger increase in dopamine than did the administration of 1.0 mg/kg amphetamine. However, the descending limb of behavioral effects of psychostimulants is generally attributed to stereotypy or unconditioned behavior (Katz, 1989; Skjoldager et al., 1991), not to decreases in dopamine release. Previous studies have shown that psychostimulants increase extracellular dopamine levels in a dose-dependent manner and does not result in an inverted U-shaped curve (Chen and Reith, 1994; Church et al., 1987; Hemby et al., 1995). Therefore, the decrease in behavioral output following 1.0 mg/kg amphetamine may not be due to a decrease in extracellular dopamine levels but could be a result of unconditioned behaviors resulting from increased dopamine levels. Alternatively, this relatively high dose of amphetamine may have increased extracellular serotonin to a level that augmented serotonin receptor activation, thus suppressing the observed behavioral output. In support of this hypothesis, PAL-313 did not alter the response rates in the current study, although this drug increased dopamine levels to a maximum of 340% baseline at a dose of 1.0 mg/kg. Previous studies have shown that drugs that increase dopamine levels to 150–300% above baseline in the striatum, such as cocaine and tropane analogs of cocaine, also produce significant increases in operant behavior (Ginsburg et al., 2005; Kimmel et al., 2007). That neither 1.0 mg/kg amphetamine nor PAL-313 increased response rates despite increasing dopamine levels suggests that increased serotonin release also alters post-synaptic events, resulting in behavioral-stimulant effects that are lower than what one would predict based on the observed increases in dopamine levels. To test this hypothesis, future studies should determine changes in both extracellular dopamine and serotonin levels in this brain region following administration of a range of doses of these two drugs.

The current studies are the first to report in vivo neurochemical effects of PAL-353, PAL-313, and PAL-287 in nonhuman primates. Earlier studies examined the effect of PAL-287 on altering basal dopamine and serotonin levels in the prefrontal cortex of rodents. Administration of PAL-287 increased extracellular dopamine levels in the prefrontal cortex to the same extent as administration of amphetamine did (about 700% baseline) (Rothman et al., 2005), which contrasts with our current results in the nucleus accumbens of squirrel monkeys. In rodents, serotonin levels were increased following PAL-287 administration (about 900% baseline), but not following amphetamine administration (Rothman et al., 2005). Moreover, 3,4-methylenedioxymethamphetamine (MDMA)-induced locomotor activity was positively correlated with dopamine levels in the striatum, nucleus accumbens, and prefrontal cortex, as well as with serotonin levels in the striatum and prefrontal cortex of rodents. In the same study, stereotypy was positively correlated with dopamine levels in the striatum and nucleus accumbens and with serotonin levels in all three brain regions (Baumann et al., 2008). While the rodent data suggest that behavioral-stimulant effects of monoamine releasers are positively associated with increases in both dopamine and serotonin, nonhuman primate data suggest that increases in these behavioral effects are positively associated with increases in dopamine and are negatively associated with increases in serotonin.

In addition, these studies are the first reported microdialysis studies conducted in the nucleus accumbens of squirrel monkeys. Other groups have conducted studies in this brain region in rodents (Hooks et al., 1992; Steketee et al., 1992) and rhesus macaques (Bradberry et al., 2000). To date, most microdialysis studies in squirrel monkeys have focused on neurochemical changes in the caudate (Czoty et al., 2002, 2000, 2004; Ginsburg et al., 2005; Kimmel et al., 2005, 2007), although the putamen (Davis et al., 1997) and hippocampus (Ludvig et al., 2000) in this species have also been targeted. The present study confirms that the nucleus accumbens is an accessible and viable region for assessing experimentally-induced changes in neurotransmitter levels in this species.

Significant efforts have been directed toward the development of substitute agonists to treat cocaine abuse. For example, continuous treatment with amphetamine, which selectively releases dopamine and norepinephrine, dose-dependently decreased cocaine self-administration in rhesus monkeys under both progressive-ratio and choice schedules (Negus, 2003; Negus and Mello, 2003a,b). In humans, studies show that treatment with amphetamine reduced cocaine use with little or no toxicity (Grabowski et al., 2001, 2004). Although amphetamine may appear to be an effective treatment for cocaine abuse and dependence, it has a high abuse liability, which may not be ideal for an effective medication. Accordingly, drugs that are structurally similar to amphetamine are being considered as potential medications and have been administered to rhesus monkeys that were initially trained to self-administer cocaine in order to assess the reinforcing effects of these amphetamine analogs. The potencies of four amphetamine analogs as a reinforcer in both fixed-ratio and progressive-ratio schedules did not correlate with the in vitro potencies of these analogs to release dopamine or serotonin. However, there was a very strong correlation between the ratio of the in vitro potencies for releasing dopamine versus serotonin and their reinforcing potency in both schedules of self-administration (Wee et al., 2005). These results indicate that increasing the selectivity for releasing dopamine versus serotonin increases the reinforcing effects of these drugs. As the drug becomes relatively more potent in releasing serotonin, the reinforcing effect decreases. These data support earlier studies that show increasing serotonergic tone decreases cocaine self-administration in rodents (Peltier and Schenk, 1993; Richardson and Roberts, 1991) and nonhuman primates (Czoty et al., 2002; Kleven and
progressive-ratio schedule (Wee et al., 2005), suggesting that this drug
and Matthew E. Pontell for their expert technical assistance.
authors would like to thank Mi Zhou, Julius T. Oatts, Michael A. Lowe,
(Vocci et al., 2005).
not reinforcing. Thus, this drug has several characteristics that render
monkeys trained under a
behavioral-stimulant effects in nonhuman primates. Furthermore, this
signiﬁcantly decreases dopamine levels but does not have appreciable
behavioral-stimulant effects in nonhuman primates. Furthermore, this
compound maintained very low self-administration behavior in rhesus
monkeys trained under a ﬁxed-ratio schedule or those trained in a
progressive-ratio schedule (Wee et al., 2007), suggesting that this drug
is not reinforcing. Thus, this drug has several characteristics that render
it favorable as a medication for treating psychostimulant addiction
(Vocci et al., 2005).

Acknowledgements
This research was supported by U.S. Public Health Service grants
DA00517 (LLH), DA12514 (LLH), DA12570 (BBB), and RR00165
(Division of Research Resources, National Institutes of Health). The
authors would like to thank Mi Zhou, Julius T. Gatts, Michael A. Lowe,
and Matthew E. Pontell for their expert technical assistance.

References
Baumann MH, Clark RD, Rothman RB. Locomotor stimulation produced by 3, 4-
methylenedioxyamphetamine (MDMA) is correlated with dialsate levels of
Bergman J, Madras BK, Johnson SE, Spealman RD. Effects of cocaine and related drugs in
nonhuman primates. III. Self-administration by squirrel monkeys. J Pharmacol Exp Ther
Bradberry CW, Barrett-Larimore RL, Jatlow P, Rubino SR. Impact of self-administered
cocaine and cocaine cues on extracellular dopamine in mesolimbic and sensori-
Bubar MJ, Cunningham KA. Prospects for serotonin 5-HT2A and 5-HT2C receptors as potential targets
for modulation of psychostimulant use and dependence. Curr Top Med Chem
Bubar MJ, Cunningham KA. Serotonin 5-HT2A and 5-HT2C receptors as potential targets
for modulation of psychostimulant use and dependence. Curr Top Med Chem
Chen N, Reit ME. Effects of locally applied cocaine, lidocaine, and various uptake blockers
on monoamine transmission in the ventral tegmental area of freely moving rats: a
Church WC, Justice JR, Byrd LD. Extracellular dopamine in rat striatum following uptake
Cline EJ, Scheffel U, Boja JW, Carroll FI, Katz JL, Kuhar MJ. Behavioral effects of novel
cocaine analogs: a comparison with in vivo receptor binding potency. J Pharmacol Exp Ther
Czoty PW, Justice JR, Byrd, Howell LL. Cocaine-induced changes in extracellular dopamine
determined by microdialysis in awake squirrel monkeys. Psychopharmacology
Czoty PW, Ginsburg BC, Howell LL. Serotonergic attenuation of the reinforcing and neuro-

Czoty PW, MKripanianis A, Bergman J. Methamphetamine discrimination and in vivo
release of dopamine in squirrel monkeys. Psychopharmacology (Berl) 2004;175:

Davis MD, Heffner TG, Cooke LW. Dopamine agonist-induced inhibition of neurotransmitter
release from the awake squirrel monkey putamen as measured by microdialysis. J
Di Matteo V, Di Giovanni G, Pelizzo M, Esposito E. Serotonin control of central dopaminergic
function: focus on in vivo microdialysis studies. Prog Brain Res 2008;172:7–44.
Donovan DM, Miner LL, Perry MP, Revay RS, Sharpe LG, Przedborski S, et al. Cocaine reward and
Ginsburg BC, Kimmel HL, Carroll FI, Goodman MM, Howell LL. Interaction of cocaine and
Grabowski J, Shearer J, Merrill J, Negus SS. Agonist-like, replacement pharmacotherapy
Hanson GR, Rau KS, Fleckenstein AE. The methamphetamine experience: a NIDA partnership.
Hemby SE, Co C, Reboussin D, Davies HM, Dworkin SI, Smith JE. Comparison of a novel
tropane analog of cocaine, 2-beta-propanoyloxy-3 beta-(d-tolyl) cocaine with HCl in

Hooks MS, Colvin AC, Juncos JL, Justice Jr JB. Individual differences in basal and cocaine-
stimulated extracellular dopamine in the nucleus accumbens using quantitative
Howell LL, Byrd LD. Serotonin modulation of the behavioral effects of cocaine in the
Howell LL, Kimmel HL. Monoamine transporters and psychostimulant addiction. Biochem
Howell LL, Carroll FI, Totaw JR, Goodman MM, Kimmel HL. Effects of combined dopamine
and serotonin transporter inhibitors on cocaine self-administration in rhesus
Kampman KM, Rulkutski M, Pettinati H, Muller E, Acosta T, Garrit P, et al. The combination
of phentermine and fenﬂuramine reduced cocaine withdrawal symptoms in an open
Katz JL. Drugs as reinforcers: pharmacological and behavioral factors. In: Leibman JM,
Kimmel HL, Ginsburg BC, Howell LL. Changes in extracellular dopamine during cocaine
Kimmel HL, O’Connor JA, Carroll FI, Howell LL. Faster onset and dopamine transporter
selectivity predict stimulant and reinforcing effects of cocaine analogs in squirrel
Kleven MS, Wolfrom WE. Effects of three monamine uptake inhibitors on behavior maintained
by cocaine or food presentation in rhesus monkeys. Drug Alcohol Depend 1993;31:149–58.
Koob GF, Bloom FE. Cellular and molecular mechanisms of drug dependence. Science
Kreek MJ, Methadone-related opioid agonist pharmacotherapy for heroin addiction.
History, recent molecular and neurological research and future in mainstream
Kuhar MJ. Neurotransmitter transporters as drug targets: recent progress with a focus on
Ludwig N, Nguyen MC, Botero JM, Tang HM, Scala F, Scharf BA, et al. Delivering drugs,
via microdialysis, into the environment of extracellularly recorded hippocampal
Madras BK, Fabey MA, Bergman J, Canfield DR, Spealman RD. Effects of cocaine and related
drugs in nonhuman primates. I. [3H]cocaine binding sites in caudate-putamen.
Negus SS. Rapid assessment of choice between cocaine and food in rhesus monkeys: effects
of environmental manipulations and treatment with d-amphetamine and
Negus SS, Mello NK. Effects of chronic d-amphetamine treatment on cocaine- and food-
maintained responding under a progressive-ratio schedule in rhesus monkeys. Psychopharmacologica (Berl) 2003a;167:324–32.
Negus SS, Mello NK. Effects of chronic d-amphetamine treatment on cocaine- and food-
maintained responding under a second-order schedule in rhesus monkeys. Drug Alcohol Depend 2003b;70:39–52.
Negus SS, Mello NK, Blough BE, Baumann MH, Rothman RB. Monoamine releasers with
varying selectivity for dopamine/noradrenaline versus serotonin release as candidate
“agonist” medications for cocaine dependence: studies in assays of cocaine
discrimination and cocaine self-administration in rhesus monkeys. J Pharmacol Exp Ther
Peltier R, Schenk S. Effects of serotonergic manipulations on cocaine self-administration in
Reich MEA, Meuser BE, Sershen H. Structural requirements for cocaine congeners to
interact with dopamine and serotonin uptake sites in mouse brain and to induce
Richardson NR, Roberts DC. Fluoxetine pretreatment reduces breaking points on a
progressive ratio schedule produced by intravenous cocaine self-administration in